
What is Handwritten Digit Recognition?
The handwritten digit recognition is the ability of computers to recognize

human handwritten digits. It is a hard task for the machine because

handwritten digits are not perfect and can be made with many different

flavors. The handwritten digit recognition is the solution to this problem

which uses the image of a digit and recognizes the digit present in the image.

About the Python Deep Learning Project

In this article, we are going to implement a handwritten digit recognition

app using the MNIST dataset. We will be using a special type of deep neural

network that is Convolutional Neural Networks. In the end, we are going to

build a GUI in which you can draw the digit and recognize it straight away.

https://data-flair.training/blogs/convolutional-neural-networks-tutorial/

Prerequisites
The interesting Python project requires you to have basic knowledge of

Python programming, deep learning with Keras library and the Tkinter

library for building GUI.

Install the necessary libraries for this project using this command:

pip install numpy, tensorflow, keras, pillow,

The MNIST dataset
This is probably one of the most popular datasets among machine learning

and deep learning enthusiasts. The MNIST dataset contains 60,000

training images of handwritten digits from zero to nine and 10,000 images

for testing. So, the MNIST dataset has 10 different classes. The handwritten

digits images are represented as a 28×28 matrix where each cell contains

grayscale pixel value.

Download the full source code for the project

Building Python Deep Learning
Project on Handwritten Digit
Recognition
Below are the steps to implement the handwritten digit recognition project:

1. Import the libraries and load the dataset

http://yann.lecun.com/exdb/mnist/
https://drive.google.com/open?id=1hJiOlxctFH3uL2yTqXU_1f6c0zLr8V_K

First, we are going to import all the modules that we are going to need for

training our model. The Keras library already contains some datasets and

MNIST is one of them. So we can easily import the dataset and start

working with it. The mnist.load_data() method returns us the training data,

its labels and also the testing data and its labels.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

from keras import backend as K

the data, split between train and test sets

(x_train, y_train), (x_test, y_test) = mnist.load_data()

print(x_train.shape, y_train.shape)

2. Preprocess the data
The image data cannot be fed directly into the model so we need to perform

some operations and process the data to make it ready for our neural

network. The dimension of the training data is (60000,28,28). The CNN

model will require one more dimension so we reshape the matrix to shape

(60000,28,28,1).

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

input_shape = (28, 28, 1)

convert class vectors to binary class matrices

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

print('x_train shape:', x_train.shape)

print(x_train.shape[0], 'train samples')

print(x_test.shape[0], 'test samples')

3. Create the model
Now we will create our CNN model in Python data science project. A CNN

model generally consists of convolutional and pooling layers. It works

better for data that are represented as grid structures, this is the reason why

CNN works well for image classification problems. The dropout layer is

used to deactivate some of the neurons and while training, it reduces offer

fitting of the model. We will then compile the model with the Adadelta

optimizer.

batch_size = 128

num_classes = 10

epochs = 10

model = Sequential()

model.add(Conv2D(32, kernel_size=(3,

3),activation='relu',input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.op

timizers.Adadelta(),metrics=['accuracy'])

4. Train the model
The model.fit() function of Keras will start the training of the model. It

takes the training data, validation data, epochs, and batch size.

It takes some time to train the model. After training, we save the weights

and model definition in the ‘mnist.h5’ file.

hist = model.fit(x_train,

y_train,batch_size=batch_size,epochs=epochs,verbose=1,validation_data=(x_te

st, y_test))

print("The model has successfully trained")

model.save('mnist.h5')

print("Saving the model as mnist.h5")

5. Evaluate the model

We have 10,000 images in our dataset which will be used to evaluate how

good our model works. The testing data was not involved in the training of

the data therefore, it is new data for our model. The MNIST dataset is well

balanced so we can get around 99% accuracy.

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

6. Create GUI to predict digits
Now for the GUI, we have created a new file in which we build an

interactive window to draw digits on canvas and with a button, we can

recognize the digit. The Tkinter library comes in the Python standard

library. We have created a function predict_digit() that takes the image as

input and then uses the trained model to predict the digit.

Then we create the App class which is responsible for building the GUI for

our app. We create a canvas where we can draw by capturing the mouse

event and with a button, we trigger the predict_digit() function and display

the results.

Here’s the full code for our gui_digit_recognizer.py file:

from keras.models import load_model

from tkinter import *

import tkinter as tk

import win32gui

from PIL import ImageGrab, Image

import numpy as np

model = load_model('mnist.h5')

def predict_digit(img):

#resize image to 28x28 pixels

img = img.resize((28,28))

#convert rgb to grayscale

img = img.convert('L')

img = np.array(img)

#reshaping to support our model input and normalizing

img = img.reshape(1,28,28,1)

img = img/255.0

#predicting the class

res = model.predict([img])[0]

return np.argmax(res), max(res)

class App(tk.Tk):

def __init__(self):

tk.Tk.__init__(self)

self.x = self.y = 0

Creating elements

self.canvas = tk.Canvas(self, width=300, height=300, bg = "white",

cursor="cross")

self.label = tk.Label(self, text="Thinking..", font=("Helvetica",

48))

self.classify_btn = tk.Button(self, text = "Recognise", command =

self.classify_handwriting)

self.button_clear = tk.Button(self, text = "Clear", command =

self.clear_all)

Grid structure

self.canvas.grid(row=0, column=0, pady=2, sticky=W,)

self.label.grid(row=0, column=1,pady=2, padx=2)

self.classify_btn.grid(row=1, column=1, pady=2, padx=2)

self.button_clear.grid(row=1, column=0, pady=2)

#self.canvas.bind("<Motion>", self.start_pos)

self.canvas.bind("<B1-Motion>", self.draw_lines)

def clear_all(self):

self.canvas.delete("all")

def classify_handwriting(self):

HWND = self.canvas.winfo_id() # get the handle of the canvas

rect = win32gui.GetWindowRect(HWND) # get the coordinate of the

canvas

im = ImageGrab.grab(rect)

digit, acc = predict_digit(im)

self.label.configure(text= str(digit)+', '+ str(int(acc*100))+'%')

def draw_lines(self, event):

self.x = event.x

self.y = event.y

r=8

self.canvas.create_oval(self.x-r, self.y-r, self.x + r, self.y + r,

fill='black')

app = App()

mainloop()

Screenshots:

Summary
In this article, we have successfully built a Python deep learning project on

handwritten digit recognition app. We have built and trained the

Convolutional neural network which is very effective for image

classification purposes. Later on, we build the GUI where we draw a digit

on the canvas then we classify the digit and show the results.

	What is Handwritten Digit Recognition?
	About the Python Deep Learning Project
	Prerequisites
	The MNIST dataset
	Building Python Deep Learning Project on Handwritt
	1. Import the libraries and load the dataset
	2. Preprocess the data
	3. Create the model
	4. Train the model
	5. Evaluate the model
	6. Create GUI to predict digits

	Summary

